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Abstract

The dual purpose of this report is to address the problems involved in

extending the JANAF Thermochemical Tables for monatomic gases to higher
temperatures (e.g. T > 6000 K), and the formulation of more definitive
procedures for producing the tables in their present format. (T < 6000
K). Since there is a total lack of experimental thermochemical data for

high temperature gases, statistical mechanics must be used to calculate

the thermodynamic properties. Thus some discussion of statistical

: | mechanics is necessary and this is included in a non-rigorous manner.

The problem of finding a suitable cutoff procedure for the electronic
partition function constitutes the body of this report. In the final
section a recommended method of extending the calculations to higher
temperature is advanced, and a brief discussion of the remaining problems
in implementing this method is given. An annotated bibliography of
relevant literature is included. A method of predicting the theoretical
statistical weight for the electronic energy levels of the first 86

elements is presented in an appendix.
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I.  NATURE OF THE PROBLEM

For an ideal gas statistical mechanics may be used, in principle,
to calculate the thermodynamic properties of any atom or molecule, no
matter what the complexity. The partition function is separable into |
the various terms Q. (translational) and Q; (internal).

Q = Qtr 5 Qi [1]

Qi may be written as a product of several terms; electronic, vibrational,
rotational, etc. For a monatomic gas only the electronic term (Qe) need

be considered so

Q (2]

‘ monatomic - dtr * @
If the terms Qtr and Qe can be accurately determined at all temperatures

e

then the thermodynamic properties may be accurately calculated from Q

via standard formulas (14, 15).

II. THE TRANSLATIONAL PARTITION FUNCTION

Qtr is usually derived from a particle in a box procedure (14, 15),
the only assumptions being the replacement of a summation of closely

spaced levels by an integration and the applicability of Boltzmann

(classical) statistics. The use of the integration presents no known
problems since the translational energy levels are extremely close
together. For translational motion Boltzmann statistics remains valid
as long as

(=
3/2
Jﬁ (2mmkT) ¥ 51 [31]

N

This condition is violated only under the condition that the density,
proportional to N/V, becomes very high (14). This situation occurs in

the interior of stars and also for the electron gas in metals, compounded
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in the latter situation by m being lower by a factor of 2 x 103 than for
any atomic or molecular case. Under these conditions quantum rather
than classical statistics will be obeyed.

Under all other conditions classical statistics will be obeyed and
Qtr may be accurately ca]culated.1~ The high density conditions are
immaterial for our purposes since most thermochemical tables are calcu-

lated for standard conditions, 1 atm pressure.

IIT. THE ELECTRONIC PARTITION FUNCTION

A. The Problem
The electronic partition function is usually calculated from equation
4. In the JANAF Thermochemical Tables (25) we have normally used

observed values for the energy

Q =zg exp[€
L XP(E%) [4]

levels, €4 (16). There are several practical problems in this proce-
dure. First, our prime source (16) is at 12ast 20 years out of date.
Thus, to do a thorough job, some means of obtaining an update of this

information must be found. In the past the U. S. National Bureau of

+ At temperatures near absolute zero the classical calculation of Q

will also break down. In addition to the non-applicability of Boltiﬁann
statistics at these temperatures (see eq. 3), the thermal energy is such
that only a small number of translational levels are accessible and the
integration is no longer a valid approximation. We shall not be concerned
with these deviations from classical behavior since they occur below 10K
for atomic and molecular systems under standard conditions (1 atm pressure).
For the electron gas these "low-temperature" deviations extend to ~1200K
at one atmosphere pressure due to the low mass of the electron.
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Standards (NBS) Atomic Energy Level Data Center has been of assistance
on an informal basis and they have published updates (27, 28) for
selected atoms and ions. However, even with the assistance of NBS we
face increased time and money costs in the form of literature searching
and retrieval and critical evaluation to arrive at the "best" atomic
energy levels. This becomes more important at higher temperatures since
the higher levels contribute more to the partition function (see equation |
4) and it is generally in the high energy region that new levels are
being discovered. As an example the NBS publication (16) lists approxi- ;
mately 120 energy levels for Ar" while a not-so-recent publication (17)
lists approximately 200 new levels. If this situation is widespread it
could lead to significant high temperature differences in the thermo-
dynamic properties for many atomic species. However, even if all the
atomic levels can be obtained for an atom (this is impossible, see
below) severe difficulties occur in the computation of Qe.

To understand the difficulty in computing Qe one must first under-
stand the basis of atomic structure. For a hydrogenlike atom, quantum
mechanics leads to an exact solution for the energies of these levels as

given in the familiar equation 5. Thus there are an
. 1 . -
Gy ® R(1 - ;g), el 2.3 0 - v [5)

infinite number of levels leading up to the ionization potential, IP(IP=R).
The rapid initial increase of €, with principal quantum number, n,

usually leads to the statement (14, 15) that all levels other than the
ground state may be neglected for hydrogen-like atoms since the exponential
term in equation 4 becomes vanishingly small. While it is true that

this term becomes extremely small it remains finite and rapidly approaches

its value for the ionization potential. Thus if one sums an infinite number
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of such terms the partition function Qe (and Q) becomes infinite. This
is compounded by the fact that 9, « n2 so the approach to infinity is
more rapid. Although the details of atomic structure are different (and
not exactly solvable) for non-hydrogen-like atoms it is still true that
there are an infinite number of bound states so the same end result, Qe
= o, is obtained. The same is true for molecules.

Since this leads to infinite values of the thermodynamic functions
for all substances at all temperatures this is clearly contrary to
experience, as is the conclusion that the probability of finding a
hydrogen atom in the ground state is zero, which is the logical extension
of this theory (5). One concludes, therefore, that either quantum
mechanics or statistical mechanics is in error. Strickler (5) has shown
that the way out of this paradox is to realize that for large values of
n the wave functions will not be hydrogenic, but will be described by
the container due to the large volume of a single atom. Since this is
essentially a particle in a box problem, there will then be a finite
number of energy levels just as for Qtr’ resulting in a finite Qe. He
further shows that even if one assumes the flask to be the size of the
known universe, Qe will not differ significantly from unity for atomic
hydrogen at 298.15 K, i.e., the ground state contribution only. A quick
calculation shown that the excited states can no longer be ignored as
the temperature increases; at 25,000 K for hydrogen each excited level
contributes ~.002 to Qe, and this contribution will increase with temperature.

Since the ionization potential of hydrogen is higher than for most
other atoms [only the rare gases are higher (16)] the situation will be

more severe for other atoms. The worst cases will be those atoms with




the lowest ionization potentials, the alkali metals, followed by the

alkaline earths and transition elements. For sodium the problem becomes

serious at 5000 K (7). For the transition elements and rare earths

there is the additional problem of a number of quite low lying levels

which will make significant contributions even below room temperature.
What is needed is a generally applicable method of determining Qe

which will be valid at all temperatures. Since there are a finite

number of energy levels, a reasonable approach would be to simply cut-off

the summation process for Qe at some point. In the next section we shall

investigate various cut-off procedures that have been suggested.

B. Cut-off and Fill Procedures

Several cut-off procedures have been used in the past and they
generally fall into these catagories:
*no dependence on temperature and pressure (10, 24)
-dependence on temperature only (1, 7, 9)

-dependence on density of charged particles (3, 13, 22, 23)

The first category includes using the ground electronic level only
or summing over some fixed number of levels which is usually arbritary (1)
(to n = 5 for example, (24)). These methods generally fail at high temp-
eratures for obvious reasons. The present JANAF method of summing over
all observed levels falls in this category (no P or T dependence) and
certainly has some validity in that the levels have been observed and ]

therefore exist. However it is not known whether they exist in the gas

under the standard condition (1 atm) to which the tables are applicable




and there remains the problem mentioned earlier of keeping up to date on
all observed energy levels, see section III.A.

Methods in the sacond category jenerally use a quantity called the
"ionization potential lowering" which is a function of temperature only.
The theoretical basis of this method is that the effective ionization
potential will be lowered due to collisions with surrounding atoms such
that an outer electron with a binding energy less than kT will generally
be released (ionization) in a collision (1). McChesney gives a simple
derivation (3). Thus the summation in equation 4 is halted at €, = IP - kT.
This cut-off technique has been used by several investigators (3, 16).
McChesney (3) reports another ionization potential lowering method which
is proportional to the square root of mkT (m = atomic mass) and has
apparently not been used in any calculations. According to the derivation
(3), these methods are strictly applicable only to plasmas where one has
free electrons present. In addition it should be noted that at high
enough temperatures all levels other than the ground state will be
eliminated from the sum in equation 4. The method where the summation
is halted at IP-kT will be referred to later as the TEMPER method as in
the NASA program (1). McBride and Gordon (1) recommend this method and
have used it in calculations (7).

The methods dependent on both P and T are mainly due to the assumption
that each atom may occupy only a limited volume in space. These methods
are often referred to as excluded volume methods and are, essentially,
particle in a box methods. Fermi (11) and Bethe (18) both derived cut-
of f formulas based on these assumptions. Gurvich (8) and McChesney (3)
give the derivation due to Bethe which assumes hydrogenic orbits and the
molecular volume limited to the molar volume divided by Avogadro's

number.
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Bethe's criterion (at 1 atm pressure) then reduces to:

n,,, bt 8 (6]

Fermi's criterion has a more complex formulation (8, 11) but as discussed

e 2.461 T

by Gurvich (8) gives nearly the same values for Peias The Bethe formula-
tion, equation 6, is easy to implement though care must be taken to pre-
vent discontinuities since i is allowed to change in integer increments
only (8). This method of limiting the sum in equation 4 will be referred
to later as the BETHE method.

The last general method of limiting the summation in equation 4
uses methods involving ionization potential lowering, the amount of
which is a function of electron and ionized particle densities. These
methods have been reviewed by McChesney (3) and are not further considered
here since they apply to a plasma only and cannot be used for a single
species as required in the JANAF tables; however, see section IV.

In addition to the cut-off method some decision must be made whether
to include predicted, but unobserved, energy levels which lie below the
cut-off point. If they are to be included some method of filling in the
missing levels must be found. These levels can be predicted by the
Rydberg or Rydberg-Ritz formulas (19) but this method is not compatible
to computer application. McBride and Gordon (1) developed a method of
predicting the total 9, for each principal quantum number n, for the
first 20 elements. Several authors (1, 8) have shown that only a rough
approximation of the energies of upper levels is needed so a simple
method of calculating how many levels are missing can be combined with a
rough approximation of their energy. The missing levels for any value
of n are then predicted to 1ie at the energy of the highest known level

for that value of n. This approximation becomes more accurate as n

increases, since the atoms behave in a more hydrogenic manner. This

T P L L T T IV S T TR A PR W P e T J




metnod will be referred to as the FILL procedure as in the NASA program
(1). The FILL procedure has been extended to cover the entire periodic
table excluding the lanthanides and actinides in Appendix 1.

C. Effect of Cut-Off and FILL Procedures on Thermodynamic Properties

The dependence of the various thermodynamic functions on the partition

function Q is given as follows:

GO_HO
T =
RT nq
G 2 2 2
p=T_dQ _TdQo" , 2T dQ
R Qﬁg qdt tqQ dr
e G
TRE. . gl
°.Td
Erga Ty
The dependence of each property on Q, and therefore on the cut-off and

fi11 methods involved in Qe’ is different and must be evaluated separately.
One expects C;/R to show the most radical behavior since it involves

both first and second derivatives of Q. In order to investigate the
effect of the various cut-off procedures we shall calculate the various
thermodynamic properties of Na(g). As mentioned earlier the alkali

metals have very low ionization potentials so this represents a worst-
case approach.

The electronic energy levels and degeneracies for Na(g) were taken
from Moore (16). The observed levels have a total degeneracy of 648 and
extend to n = 59 although a large number of levels remain unobserved for
the higher values of n. See Table 1 for a summary of these levels. The
labels on the plots correspond to those in the NASA program (1), with

the exception of BETHE, and are as follows:

M il s
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ALLN - using all observed levels (16). This is the present
JANAF method.

ALLN-FILL - using all observed levels and filling in missing
levels using FILL option

TEMPER - summation over observed levels is cut-off at IP-kT

BETHE-FILL - summation over levels using cut-off from equation
6 and the FILL option

circles - using ground state only

dashed line - translational contribution only

Consult the previous section for further details on these method.

The effects of the various cut-off procedures on the thermodynamic
properties of sodium are shown in Figures 1 and 2. A quick reference to
these figures confirms that the largest effect is for the heat capacity
where differences exceeding 1000 percent are noted near 5000 K. The

least sensitive property is the free energy function, -(G° - H;)/RT, and

this is fortunate since this term is important in equilibrium calculations.

The largest deviations in the thermal properties arise when using the
ALLN-FILL procedure and this will become more severe as energy levels
are discovered to higher n values. For these reasons this procedure has
not been used in the past and will not be considered for future use
since it obviously overestimates the contribution of upper states. As
shown in Table 2 the total degeneracy using this procedure is 140,410 and
will increase rapidly (v as n2) as n increases.

As shown in Figures 1 and 2 the TEMPER method yields the least
deviation from the classical (ground state only) case. This is because
more levels are eliminated from the summation in equation 4 as the

temperature increases. In fact at high enough temperatures, see Table

..‘ . . . ; —




2, all levels are cut-off except the ground state. The FILL option has
virtually no effect when using the TEMPER method since the levels are
rapidly cut-off to a paint where most levels have been observed. For
sodium the TEMPER-FILL results are imperceptibly higher than the TEMPER
results. The main objection to the TEMPER method is a philosophical

one since this method leads to a narrower distribution of electrons over

a set of energy levels with increasing temperature which is the opposite

of what is expected from fundamental principles (Boltzmann distribution).

The BETHE-FILL method results in thermodynamic properties slightly
higher than for the ALLN method for sodium as illustrated in Figures 1
and 2. Although not illustrated, the BETHE method (without the FILL
option) lies approximately midway between the curves for the ALLN and
TEMPER methods. Of these methr's the BETHE-FILL method seems preferable
since it avoids the problem of unobserved levels inherent in the others.
This procedure has been used by Gurvich (8) although his procedure for
predicting the energies and numbers of unobserved levels is slightly
different than the FILL procedure used here.

If Na(g) represents a worst-case approach then He(g) represents a
best-case approach since it has the highest ionization potential of any
neutral atom (16). Its thermodynamic properties are illustrated in
Figures 3 and 4 and the same general behavior of the various procedures
is observed. The big difference is the temperature at which the various
cut-off procedures have an effect. Neglecting the ALLN-FILL method,
Na(g) shows deviations beginning at 4000 K while He(g) does not show

deviations until ~20000 K.

AL il e RN e Bt Ko L e
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IV. PLASMAS

Although we are interested primarily in the calculation of prop-
erties of individual species it seems of interest to mention some of
the salient properties of plésmas, i.e. mixtures of atoms, ions, and
electrons in thermal equilibrium. The reason for this is that at
temperatures high enough for significant contributions from excited
states in Qe to be important, one begins to get significant amounts
of ionization, e.g. Na(g) ~ Na+(g) + e (g). Presumably the primary
use of JANAF tables at such temperatures would be to calculate equil-
ibrium properties of these systems. Several authors (3, 6, 9, 10, 12,
13, 20, 21, 22) have discussed the details of plasma and shock wave
calculations which are usually done in an iterative procedure; we shall
only consider two items of importance to our discussion of individual i
species. The effect of a charged species (ion or electron) on a neutral
atom is twofold; modification of the energies of the electronic levels
(Stark effect) and lowering of the ionization potential, both due to the
long range Coulomb effect. Both of these will be a function of distance
and ion density.

The Stark effect is usually ignored since its greatest effect will
be on upper electronic levels and there are no simple methods for exact
calculations. Use of neutral atom levels in a plasma is therefore an |
approximation. Lowering of the ionization potential due to charged }

species leads to a family of cut-off procedures (3) which are dependent

on temperature and/or charge density. McChesney (3) argues against the |
use of the BETHE method in plasmas while other authors have used this
method (20, 21). Capitelli et al. (6) and Woolley (23) have shown that

the equilibrium properties of these plasmas are virtually independent of
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the cut-off procedure used. Capitelli et al. (6) have shown that this
is due to a compensation between reactional and frozen terms which are
dependent on electronic excitation (Qe)' Therefore although the cut-off
and FILL procedures have a large effect on the thermodynamic properties
of individual species there is only a small effect on equilibrium
properties in plasmas. However the methods should not be mixed as this
may lead to gross inconsistencies.

In dealing with real systems such as plasmas one is always faced
with assigning a portion of the interaction to standard states and
another portion to an equation of state. This is not unlike treating
dissociation in molecular systems where one may treat the system as a
perfect solution of three components or as a non-ideal solution of one
or two components with any other contributions accounted for by the
equation of state (30). In either the atomic or molecular cases the
choice and division of components is arbitrary to some extent, but the
important thing is that consistency is maintained so that all of the
energy levels are counted once and once only. The choice of cutoff
procedure allots the electronic energy levels to those belonging to
the associated species (e.g., Na) and the dissociated (ionized) species
(e.qg., Na* + e"). In order to maintain consistency the same cutoff
procedure must be used for all species or a large bias in the equili-

brium properties of plasmas may result.

V.  SUMMARY AND RECOMMENDATIONS

It has been shown that calculated high temperature thermodynamic
properties are greatly influenced by the method used to cut-off (and
supply missing levels to) the electronic partition function. Despite

this effect on the properties of individual species, the cut-off and

r i e b RN A
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FILL procedures appear to have little effect on the equilibrium prop-
erties of a mixture as long as the same method is used for all species.
This is fortuitous and makes the choice of a cut-off procedure somewhat
less critical. Nevertheless a procedure is necessary that is easy to

implement and as accurate as possible. It is believed that the BETHE

cut-off procedure combined with the FILL option provides the most

reasonable alternative at our present state of knowledge. This method

will be used on future JANAF Tables. This method requires minimum

knowledge of the observed spectrum (to n = 13 at 20,000 K) and fills
in missing levels so it should be reasonably independent of new
observations. This minimizes the literature search aspects.

Based on the limited calculations already performed it appears
likely that switching from the ALLN to the BETHE-FILL procedure will
cause only minor differences below 6000 K for most current JANAF Tables.
The largest changes are expected to be for the alkali metals. If the
Tables are extended to higher temperatures the BETHE-FILL procedure
should yield more uniform results. The upper limit to validity of this
procedure (or any of the other cut-off procedures) is not known but it
seems likely that it will be satisfactory to at least 10,000 K for most
species.

There is no absolute means of determining which method is correct
based on measured data since appropriate experiments at these high
temperatures do not seem feasible in the near future. Therefore, it
seems desirable to incorporate some statement concerning at what temp-
erature the cut-off criteria becomes important and some measure of the
uncertainty due to it. The free energy function or the entropy appears

suitable since the values calculated via any cut-off procedure show a
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continuous increase with temperature. Of these two, the free energy
function [-(G°- H298)/T] seems to be preferable since it relates the
free energy of formation at any temperature to the heat of formation at
298.15 K and, therefore, enters directly into equilibrium calculations.

It is recommended that the temperature at which the difference in the

free energy function, calculated via the BETHE-FILL and TEMPER procedures,

reaches 0.1 gibbs/mol should be tabulated on future JANAF tables as a

measure of uncertainty due to the cut-off procedures. For Na(g) this is

5100 K and for He(g) it is 24,400 K. These represent essentially the
worst and best cases, respectively, for neutral atoms. The ionization
potentials for positively charged ions are generally quite high and
their properties will be valid to even higher temperatures before uncer-
tainties due to cut-off methods arise.

Implementation of the BETHE-FILL procedure for general usage will
require several tasks. First, the BETHE procedure must be incorporated
into a computer program in a manner which will avoid discontinuities in
the thermal functions. Calculations for this report were done, in part,
by hand to avoid discontinuities. Gurvich (8) has described a method
which is applicable to computer usage so no problems should arise in
this area. The FILL procedure is already implemented in one of our
computer programs (1) for the first 20 elements and will be extended to

the remaining elements using the results of Appendix I.

Sicallh
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TABLE 1

A Summary of Some of the Electronic Energy Levels of Na(g)

10
15
20
30
40
50
59

1pt

€ range, en?

0-29173
25740-34589
33201-37060
39983-40351
40901-40958

41150
41320
41378
41404
41417

41450

* using FILL option

1.

ionization potential

%n
observed predicted*
18 18
32 32
50 50
32 200
16 450
6 800
6 1800
6 3200
6 5000
6 6962
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TABLE 2

Highest Principal Quantum ‘Number and Total Number of Levels
Used in Determination of Q, for Na(g)

6000 K 10000 K 40000 K
i’ 594 0 29 g L9
ALLN 59 648 59 648 59 648
ALLN-FILL 59 140,410 59 140,410 59 140,410
TEMPER 6 102 5 28 3 oF
BETHE-FILL 10 881 11 1120 14 2200
BETHE 10 298 11 322 14 374

+ ground state only
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FIGURE 1. HEAT CAPACITY AND ENTROPY FOR SODIUM GAS
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FIGURE 2. FREE ENERGY FUNCTION AND ENTHALPY FOR SODIUM GAS
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E FIGURE 3. HEAT CAPACITY OF HELIUM GAS
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FIGURE 4. ENTROPY OF HELIUM GAS
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Appendix I. Prediction of Total Quantum Weights

From Electronic Configurations

In order to apply the FILL option (1) one must be able to predict
the total quantum weight (degeneracy) arising from various electronic
configurations. This may be done by referring to the predicted terms
as derived from atomic theory (see Tables 10 and 11 of ref. 26). The
quantum weights arising from these terms may then be calculated in the
usual manner from atomic theory (26). The results for some simple cases
are given in Table 3 for non-equivalent electrons (different n, £ subgroups)
and in Table 4 for equivalent electrons (having the same n and the same £).
The results of Table 3 may be verified by remembering that there are 2
ways to place one electron in an s orbital (s = +1/2 or s = -1/2), 6 ways
to place one electron in the 3 p orbitals, etc. The Pauli principle
restricts the placement of multiple electrons having the same values of
n and £ and leads to the differences between Tables 3 and 4.

We now wish to calculate the total quantum weight allowed for any
atom assuming excitation of only the most easily excitable electron.
The calculation is outlined here for the magnesium atom whose ground
state configuration is [Ne]352. Atomic theory tells us that the
allowable configurations within the n=3 shell are [Ne]3sz, [Nel3s3p, and
[Ne]3s3d. Reference to Tables 3 and 4 shows that the total quantum

weight of these configurations is 33. Assuming excitation of one

electron to the n=4 shell gives allowable configurations of [Ne]3s4s,
[Ne]3s4p, [Ne]3s4d, and [Ne]3s4f which we write in shorthand notation
as [Ne]3s4spdf indicating one electron in the 3s orbital and one

electron somewhere in the n=4 shell. Reference to Table 3 gives a




T

-23-

total quantum weight (G) of 64 for these configurations while for the
n=5 shell we get G=100 for [Ne]3s5spdfg. The values of G for these last

two examples may be given by G=bn2

where n is the principal quantum
number of the outer shell and b for the current example is 4. The
procedure may be extended to all higher values of n. This is the FILL
method originated by McBride and Gordon (1). This same procedure will
work, without exception, for the first 18 elements and our results
(Table 5) agree with those of McBride and Gordon (1).

Beginning with potassium (at. no.=19) this procedure should be
modified because the orbitals no longer fill in sequence by n value.
Instead the [Ar]3d and [Ar]4s terms are of approximately equal energy;
for potassium the ground state is [Ar]4s and there are low lying states
from the [Ar]3d configuration. We choose to count these states from
“inner" configurations as part of the ground state (n=4) quantum weight.
For potassium we arrive at a total quantum weight of 42 for the con-
figurations [Ar]4spdf and [Ar]3d using Table 3 and 4. This is higher
than that derived by McBride and Gordon (1) since they did not count the
[Ar]3d levels. The excited state quantum weights for potassium can be
calculated using b=2 as derived using configurations such as [Ar]5spdfg,
[Ar]6spdfgh, etc.

Using the procedure outlined above for potassium allows one to
extend the treatment to the transition elements and throughout the
remainder of the periodic Table. However, in the transition series it
seems advisable to impose limitations based on the non-observance of
terms arising from certain eleétronic configurations. This is an
empirical procedure and must be recognized as such but it is designed to

prevent counting of terms which, most likely, occur above the ionization
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limit. The general ground state configuration in the first transition
series is [Ar]4sz3dm. Other possible (inner) configurations involving
n=4 terms are [Ar]as3d™, [Ar]4as3d™apdf, [Ar]3d™'4pdf, [Ar13d™?Z, and
[Ar]4523dm']429j, 0f these, terms arising from the last configuration
are not observed in the first transition series except for Cr and Fe
where [Ar]4sz3dm']4p terms are seen very near the ionization limit
[16,27,28]. Therefore it seems likely that most of the terms involving
the [Ar]4523dm']4ggf_configuration 1ie above the ionization limit so we
do not count them. For similar reasons we do not count terms arising
from [Ar]as3d™af or [Ar]3dm+]4f configurations. Likewise, when excita-
tion to orbitals of higher principal quantum numbers are considered we
count only [Ar]4s3d"5spd and [Ar]3dm+]5§gg terms and their counterparts
for higher orbitals. Because of this, a constant quantum weight is
predicted for excitation to each of the upper levels rather than one

2

which increases with n~ as predicted earlier for the non-transition

atoms. In Table 5 we list the value of this constant, c, for the transi-

tion elements. Beginning with Cu, the filled d]0

shell begins to show

its exceptional stability and we consider only excited states arising

from this configuration and return to the previous mechanism for calculating
G for the excited states.

The procedure outlined above may be extended throughout the rest of
the periodic Table with only two additional modifications. The first of
these is that beginning with silver, we count configurations involving a
single 4f electron as part of the ground state degeneracy (Zg), e.g.
[Kr]4d104f for Ag and [Kr]5525p44f for I. These contributions are
allowed through lanthanum, after which the 4f shell fills completely.

We have not worked out the results for the lanthanide series (4f electrons

being added) since there is no interest in these elements by the JANAF
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group at the present time. The final modification is the counting of
configurations involving single 5f or 5g electrons as part of the ground
state Ig beginning with gold.

The results are summarized through atomic number 86 (Radon) in
Table 5. These values refer to the neutral atom. Since the electronic
structure of positive ions is similar to that of the isoelectronic
neutral atom (16), the results in Table 5 may be applied to positive
ions by taking care to use values of Zg and b (or c) corresponding to
the isoelectronic neutral atom. Thus, for Mg++ one would use the values
for Ne from Table 5. This same extension must not be made to negative
ions. Because of the low ionization potential of most negative mona-
tomic ions, they are usually treated as if there are no bound excited
states (8,25). A recent critical evaluation by Rosenstock et. al. (29)
lists only three negative monatomic ions containing observed bound
excited states; C°, Mg~ and Si~. Only a single bound excited state was
observed for each of these. Bound excited states have been theoretically
predicted for other negative ions (H", Be ', A1", and P”) but have not
been observed (29). Therefore we favor using only observed electronic

states when calculating thermodynamic properties of negative monatomic

ions.




TABLE 3. QUANTUM WEIGHTS OF NON-EQUIVALENT ELECTRONS

Electron
Configuration

ss
sp
sd
sf
sg
pp
pd
dd

Total Quantum Weight
0f Terms

12
20
28
36
36
60
100
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TABLE 4. QUANTUM WEIGHTS OF EQUIVALENT ELECTRONS

4 Conf’}:ﬁgg?on b ggagmsblei il
s] 2
52 1
P (p°) 6
p?(p%) 15
p 20
p®(p°) 1
da'(d%) 10
d?(d®) 45
da3(d’) 120
da*(d®) 210
& 252
319(4% 1
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TABLE 5. PARAMETERS USED WITH THE FILL PROCEDURE

Atomic Atomic
Number Symbo) g b(or c*) Number Symbo1 Ig b(or c*) «
. 1 H 2 2 38 Sr 670 4
2 He 1 4 39 Y 1260 1170*
3 Li 8 2 40 Ir 3855 3780*
4 Be 13 4 41 Nb 7992 8100* ]
5 B 6 2 42 Mo 11676 12096*
6 c 15 12 43 Te 12216 12852*
7 N 20 30 44 Ru 9135 9720*
8 0 15 40 45 Rh 4780 5130*
t 9 F 6 30 46 Pd 1666 1800*
: 10 Ne 1 12 47 Ag 394 2
1 Na 18 2 48 Cd 125 4 ]
12 Mg 33 4 49 In 92 2 ]
13 Al 16 2 50 Sn 351 12 ;
14 Si 75 12 51 Sb 860 30
15 P 170 30 52 Te 1135 40 :
16 S 215 40 53 I 846 30
17 C1 156 30 54 Xe 337 12
’ | 18 Ar 61 12 55 Cs 124 2
g 19 K 42 2 56 Ba 1138 4
' 20 Ca 426 4 57 La 2200 1170*
21 Sc 1260 1170% Lanthanide series-4f shell filled
22 Ti 3855 3780* 72 Hf 3855 3780*
23 v 7992 8100* 73 Ta 7992 8100*
24 Cr 11676 12096* 74 W 11676 12096*
25 Mn 12216 12852* 75 Re 12216 12852*
26 Fe 9135 9720* 76 Os 9135 9720*
27 Co 4780 5130* 77 Ir 4780 5130*
28 Ni 1666 1800* 78 Pt 1666 1800*
29 Cu 362 2 79 Au 434 2
30 In 61 4 80 Hg 205 4
31 Ga 30 2 81 M 132 2
32 Ge 159 12 82 Pb 591 12
33 As 380 30 83 Bi 1460 30
34 Se 495 40 84 Po 1935 40
35 Br 366 30 85 At 1446 30
36 Kr 145 12 86 Rn 577 12
37 Rb 74 2
' *This is the ¢ value which represents the total quantum weight for each value
of n above the ground state principal quantum number.
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